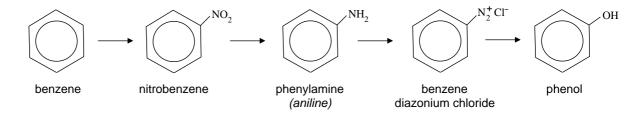

Knockhardy Publishing

PHENOL

Structure •

- phenol is an aromatic alcohol
- the OH group is attached directly to the benzene ring
- it is an almost colourless crystalline solid of formula C₆H₅OH


Uses

production of plastics

antiseptics disinfectants resins for paints

Preparation • you cannot put an OH group directly onto benzene by electrophilic substitution

• phenol can be synthesised in a multi-stage process

Nitration of benzene

reagents conc. nitric acid and conc. sulphuric acid (catalyst)

conditions reflux at 55°C

equation C_6H_6 + HNO_3 -> $C_6H_5NO_2$ + H_2O

mechanism electrophilic substitution

Reduction of

nitrobenzene reagents tin and **conc**. hydrochloric acid

conditions reflux

equation $C_6H_5NO_2 + 6[H] \longrightarrow C_6H_5NH_2 + 2H_2O$

Diazotisation of phenylamine

phenylamine reagents nitrous acid and hydrochloric acid (use sodium nitrite)

conditions keep below 10°C

equation $C_6H_5NH_2 + HNO_2 + HCl$ —> $C_6H_5N_2$ + $C\Gamma$ + $2H_2O$ benzene diazonium chloride

reaction type diazotisation

Substitution reagents water

conditions warm above 10°C

equation $C_6H_5N_2$ + $C\Gamma$ + H_2O -> C_6H_5OH + N_2 + HCI

Knockhardy Publishing

CHEMICAL REACTIONS OF PHENOL

Reactions of the -OH group

Water

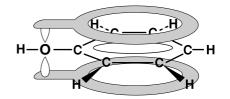
- phenol is a weak acid
- it is a stronger acid than aliphatic alcohols
- the aromatic ring helps weaken the O-H bond and stabilises the resulting anion
- it dissolves very slightly in water to form a weak acidic solution

$$C_6H_5OH(aq) \rightleftharpoons C_6H_5O^-(aq) + H^+(aq)$$

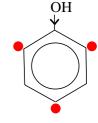
NaOH

- phenol reacts with sodium hydroxide to form a salt sodium phenoxide
- it is ionic and water soluble

$$C_6H_5OH(aq)$$
 + NaOH(aq) -> $C_6H_5O^-Na^+(aq)$ + $H_2O(I)$


Na₂CO₃

- phenol doesn't react with carbonates to produce CO₂
- it is not a strong enough acid
- used to differentiate between phenols and carboxylic acids


ELECTROPHILIC SUBSTITUTION REACTIONS

Bromine

- the OH group is electron releasing
- electron pair donation takes place from a p orbital on oxygen

- it increases the electron density of the delocalised system
- it makes substitution much easier compared to benzene
- the electron density is greatest at the 2, 4 and 6 positions
- substitution takes place at the 2, 4 and 6 positions
- phenol reacts readily with bromine water WITHOUT A CATALYST
- it is so easy that multiple substitution takes place

HNO₃

- other electrophiles such as NO₂⁺ react in a similar way
- phenol is nitrated with dilute nitric acid (benzene requires c.HNO₃/c.H₂SO₄)

OH OH NO₂ +
$$H_2O$$

Q.1 For each of the following compounds...

- (a) work out the molecular formula (b) state its use or importance
- (c) classify as 1°, 2° or 3° aliphatic alcohols or phenols (or both)

Vitamin A

Estradiol

Testosterone

Paracetamol

Picric acid

Cholesterol

Menthol

4-chloro-3,5-dimethylphenol 'Dettol'

Ethane-1,2-diol